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ABSTRACT

This report comprises three related papers on inferential
procedures for the Weibull or extreme-value distribution based on
censored samples., In Chapter I a simple, unbiased estimator,
based on a censored sample, is proposed for the scale parameter
of the extreme-value distribution. The exact distribution of the
estimator is determined for the cases in which only the first two
or only the first three observations are available.
distribution is derived, and an approximate distribution for small
sample size is also provided. Interval estimation for the scale
parameter is developed and a conservative interval estimate for
reliability is also obtained.

Cheptexr II represents a continuatic. of the material in
Chapt2r I with emphasis on combining independent lots. A study
of the saving in experiment time with censored sampling and a
numerical example are also presented.

In Chapter III tables are provided for obtaining confidence
limits on t! > parameters or reliability based on the maximum like-

lihood estimators fecr selected censoring and sample sizes.

iii

The asymptotic

e

i
it
i
b
b
-

e N




T T

Chapter
1

II

III

TABLE OF CONTENTS

Inferences Based on Censored Sampling from
the Weibull or Extreme-value Distribution

Results for One or Mcce Inderendent Samples

Results for Cenaored Sampling Based on
the Maximum Likelihood Estimators

iv

Page

18

38




CHAPTER 1

INFERENCES BASED ON CENSORED SAMPLING
FROM THE WEIBULL OR EXTREME-VALUE DISTRIBUTION

1. INTRODUCTION

The Weibull distribution denoted by
Fo(x) = 1 - exp [-(x/a)f], 0 < x < »; a,8 > 0,

is considered in this paper. The variablie Y = 1ln X follows the

extreme-valua distribution
Fyly) = 1 - exp [-exp[y-u)/bl], -= <y < =,

where b = 1/8 and u = 1ln o, The variables (X/a)8 and (Y~-u)/b
are the corresponding reduced variates whose distribuvticns are
given by letting a = § = 1 and b = 1, u = 0, respectively.
Equivalent procedures can be developed under either model, but
the extreme-~value distribution has the advantage that its para-
meters appear as location and scale parametérs.

Pcint and interval estimation procedures are in general
quite complicated for thes:2 models, especially under censored
sampling. Maximum likelihood estimators of the parameters can be
determined with the aid of a computer [4,5]; and, inferential
procedures based on the maximum likelihood estimators have been
rather extensively developed for complete samples [16,17]!. Theo-
retically these methods can be extended to censored samples;
Lhowever, the amount of computer time needed in order to determine

the appropriate distributions becomes excessive. Thus other




estimation and hypothesis testing techniques need to be developed
for the censored sampling case.

I'or point estimation one common approach has been to apply
the generalized least squares method or some related method to
obtain linear estimators of the location and scale parameters v
and b; see for example [9,10,11}. This approach for the host part
requires knowledge of the variances and covariances of the ordered
observations of the extreme-value distribution, which are avail-.
able up to n = 25 [13]. It does not appear convenient to deter-
mine tests or confidence intervals based on these point estimators
for sample sizes larger than 25. Some simple alternate point and
interval estimation procedures have been prezented in [11,14] for
censored sampling. Also, Johns and Lieberman [8] have a notable
paper concerned with determining lower bounds for reliability
based on censored samples. An attempt is made in this paper to
develop procedures which are simple, reasonably good and widely
applicable withcout the necessity of generating an undue number of

tables.

2. INFERENCES CONCERNING b

2.1, UNBIASED ESTIMATOR OF b

Suppose XyreoesXy dengte the : smallest ordered obserxvations
in a sample of size n from the Weibull distribution. Also
YyreeoYypr where_yi = 1n Xy, will represent the r smallest observa-
tions in a sample of size n frbm the extreme-value distribution.
The correspon&ing reduced observations will be denoted by

z; = (xi/a)8 and w, = (yi-u)/b.




On examining a table of coefficients for determining best

linear unbiased estimators (BLUE'S)of b, one sees that the statistic

h r-1
b = -igl(yi-yr)/nkr’n = T/kr'n

is an appropriate unbiased estimator of b, where
r-1

k = -(1/n)E [ (W.-W ). The statistic b is the BLUE for r=2,
r,n =1 '+ T

and it is somewhat similar to the BLUE for larger r. The exact
moments of the Wi are given in [18] up to n = 100, aad kr,n can
be calculated easily from these values for any prescribed com-
bination of r and n. For illustration purposes, values of kr,n
are presented in Table I for n = 5,10,15,20,30,60,100 and integer
values of r=np>2 for p = .1(.1;1.0. Asymptotic results can be
utilized for larger values of n. If r/n + p as n » », expressions
for the asymptotic values, say kp, of the constants have been
derived, and numerical values of kp are also presented in Table I.
Values of the asymptotic efficiency of 5 are also given in Tabie I,
and these indicate that ﬂ is a simple, ;elatively efficient point
estimator for b under censored sampling. A comparisbn of the
¥ariance of 5 with the variance of the best linear unbiased estimator
of b is also given in Table Il for some small sample sizes and
various censoring fractions. It may be worth noting that if

mean squared errcor rather than variance is used as a goodness
criterion, then a value of ¢ can be found such that the.MSE(cB) is

minimized. This value of c is given by

c = [l-Hrar(t‘)/b)]-'l =

)]
nkr,n/(‘+nkr,n)'

A compariscn of the mean squared error of cb with the mean squared

3




error of the best linear invariant estimator (BLIE) [9]1 of b is also

given in Table II.

2.2, SUMMARY OF DISTRIBUTION RESULTS

In considering similar tests concerning b relative to the

nuisance parameter u, one observes that attention can be re-
stricted to functions of the r - 1 statistics Yo - Y. = ln(Xi/Xr);
i=1,...,r -~ 1. The statistic 6 is suggested for use since it

is a natural type of function of these statistics to consider, and
it is also a good point estimator of b under censored sampling.

Another possible indication of its desirakility is that, although

it is not a sufficient statistic, it does appear as a quantity in
i the joint density of the Y, - Y . Also, since b/b is distributed
independently of all parameters, tests based on b are convenient

to express, if the appropriate percentage points are available.

The derivation of the distribution of § = exp[-nkr nb/b]
r-1 '

= .Hl(xi/xr)s is considered in section 5.1. For r = 2, the
1=

distribution of § is shown to be

Fz(s) = ns/(s+n~-1), 0 < s < 1.

. : 1 1 (n-2)(s - 1)
F(8) =1 - 7 3y7 {53' 2(s +n-131) 2q(s +n-1)

s I (n-/&)(zs+n-z+»’§)B,
qj:i ( (n + Yq)(2s + n - 2 - /q)




The exact distributibn becomes intractable for larger r;
however, the chi-square distribution can be used to provide an
extremely good approximation. It is shown is section 5.2 that
~2 1ln 8§ = 2nkr'n5/b is distributed approximately as a chi-square
variable with anr’n degrees of freedom, for r/n about .S or

less.

The asymptotic distribution of T/b = -1ln S is also derived

in section 4. It is shown that the distribution of

/n{(T/b) - up)/op approaches a standard normal distribution as

n -+« and r/n > p, where

, o=
P

18

. (-Ap>i/ (i) (i),

| 2 3 2 2 i i+l ,.2.,
= - p)AZ - + 2 A+ 2003 (-1 !
o, =p /01 PIAg - g MR/ A ) e LY.
and Ap = =ln (1 - p). Numerical values of kp = ~H and o; are

tabulated in Table I for p = .1(.1)89.

o PRI T T T E T

2.3 TEST OF HYPOTHESIS CONCERNING b AND POWER OF THE TEST
Consider, for example, the test of H : b < b  against the

alternative HA: b > bO at the a significance level. Using the

chi-square approximation stated in section 2.2, one rejects the }:.;
hypothesis Ho if 5
-2 ril (Y, - ¥Y.)/b_ > 2(2nk ), where Prj 2( ) > 2(V)] -
i=1 i r o’ Xu ryn’ ' Lty X-;x = a.

Linear interpolation can be used for non-integer degrees of

freedonm.
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The power of the test for an alternative b is

Prireject H ] = P[-2](¥; = Y_)/b_ > xi(anr’n)]

Pix(2nk, ) > (by/b)x%(ank, )1

Note that a test on b is anélogous to a test on the variance of a
normal distribution, since in that case (n - 1)32/02 is distri-
buted as a chi-square variable with n - 1 degrees of freedom.
Thus material developed for the normal case can be applied to
this case. For example, the sample size table and o.c. curves on
pages 299-303 of [2] are applicable by simply replacing 02 by b
and n by 2nkr’n + 1.

3. INFERENCES ON THE RELIABILITY

The problem of determining a test for £ = al/b, or equivalently

the reliability, R = exp[-(t/a)B], will now be considered. It is

1/b

R r-1 1/b .
well known that 2rg = 2 [ | X, + (n -+ )X is a
i=1

complete, sufficient statistic for o if b is known, and that
2r£/£ is distributed as a chi-square variable with 2r degrees of
freedom. Since the distribution of b is independent of a, it
follows from Basu's Thecrem [1] that é and S are stochastically
independent. Thus a joint confidence region can be determinéd

for b and R, and a conservative limit for R can be obtained. A

'similar approach has been followed by Mann [9) to obtain a test

for R based on Xr/xl and ZrE/i.
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In terms of P,

R A T I

2ré/e = 2(-1n R) (] (%7002 4 (n-re) 00 /60 700,

and

Y
S

2rt 2 2 3 2 ,]
P [ T < xal (2r) , xl-az(znkr,n) < 2nkr,nb/b < Xa3(2nkr,n{

= (1 - ocl)(l -, - a3).

RO R A S S R P R G R R

e e S

This gives the joint confidence region {R > R(b), b < b < b},

where

1/b

Aais

e ST

- T~

_ 0,2
b = 2nk_  b/x}

A

. -2 !
; (anr,n)’ and b = 2nkr,nb/xl—a2(2nkr,n)' =

A conservative (1 - al)(l - ay = a3) confidence limit for R is

then given by R = min _ R(b). It is shown by Mann [9] that
b<b<b
R(b) is a monotonically decreasing function of b, if the time t

r
is sufiiciently small, and at least if t < (I xi)l/r

'F i=1

case R = R(b). This would ordinarily be the situaticr if p is

, in which

not too small, since the expected coverage between any two order

statistics is 1/(n‘'1l). It is also clear that if t > x , then R(b)
is an increasing function of b, and R = R(b). If t < x  but near

Xpt then R(b) may not be monotonic; but it would have a cingle

minimum, and R(b) would approach 1 as b > 0, auad R(b) wounld approach
exp{-xi (2r)/2n} as b » », Thus, if t < X, and R(b) is de-
creasing at b, then R = R(b). If R(b) is increasing at b, then a

search between g and b would be needed to determine the minimum.

7
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4. ASYMPTOTIC DISTRIBUTION OF b

Results given in [3] will be applied to determine the asymp-
r-1

totic distribition of -T = Z (Yi-Yr)/n, where r/n » p as n » «, If
i=1
r
we follow the notation of [3], -nT/b = ] 1n X; = r ln X_
‘] n i=1 '
3 = 7 C;nh(X;), where the X, are ordered exponential variables.
i=1
Also, Cin = l1 i=1,...,r~1; crn = =r, cin =90, i=1r+1,...,n;
F(x) =1 - exp(~x), h(x) = 1In x = H(x), H(u) = h[F-l(u)] = In[-1In(1-u)].
Also
i
E(X,) = ] 1/(n-j+1),
i .
J=1
E n ~
ajn = [l/ (n-]+l)]lzj cinH (E (Xl))
r-1
1 = (n-j+1} l[ N [E(xi)] 1. r[E(xr)]_l].
i=]
1 Then
: n N
W= (1/n)_§ cyHIE(XS)]
j=1
{ r
' = (1/n) )} 1n E(Xj) - (r/n)ln E(X ),
j=1
r
2 2
¢ = (1/n) ] af,
n 321 in

and the distribution of Vn((-T/b) - un)/on approaches a standard

3 . . . 2 2
] normal distribution. Furthermore, Wp “p and e Op' where

r/n ~p as n » «, Let

J{x) 1, x < r/(n+l)

0, otherwise,




and let a, =p, A_=F ~(p) = -In(l-p). Then

P
- ,
“p = jOJ(u)H(u)du - alh(Ap)
P
= j In[-1n{l-u)]du - p 1ln A
0 p
=7 (=Y w @)
i=1 P
Also,
1
o (u) = (1-u)'1{f J (W)H' (W) (1-w)dw + a; (1-p)H' (p) ),
w
and
1
0; = fo[u(u)lzdu.

It can be shown that

2 3 2 2 S o.i, .. i+l,.2,
o< = (1=-p)A- - u= + 2 Ao+ 2 AT (- il.
p = P/UL=phdg = ug + 2u /Ay igl p (-84
Then the distribution of vVn((-T/b) - up)/op approaches a standard

normal distribution.

Also, kr n” —up as n » ~; and the asymptotic variance of
b is bzo;/nu;. The asymptotic variance of the maximum likelihood
estimator of b is provided in [6] for p = .1(.1).9: and, since

this corresponds to the Cramér-Rao lower bound for an unbiased

~

estimator of b, the asymptotic relative efficiency of b can be

calculated. Some numerical values of kp = —up,

c;, n var b/bz,
and the relative efficiency of b are presented in Table I.

Sy -y e S A e S
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Note that, for complete samples,

=~
i

n
n,n 'E[.Z

1—l(ln xi - 1n Xn)]/n

1

vy + E 1ln Xn

it
e

Jentan o d,
1l ~

1

where y denotes Euler's constant and numerical values of E(ln Xn)

are given in (18]. Also, from {15, page 71] kn n is approximated
7

by vy + In In n + v/ln n for large n.

5. DERIVAIION OF EXACT AND APFROXIMATE DISTRIBUTIONS

5.1. EXACT DISTRIBUTION FORr = 2 AND r = 3

The joint density of (xl,...,xr) is given by f(xl, . ,xr)
= 1 - ' z ~ R-1 - g - - .y B
= [ni/(-r) 10 1 (8/a) (X;/a) exp [~ (X,/a) "1} exp[-(n-r) (X /a)"],
i=1

0 < x, < . < X < =,
1 r

On letting Ui = Xi/xr, i=1l,...,r - 1, the joint density of the

Ui is found to be

| r-l 8-1 ( )/[ri
peeesld ) = [ni/(n-r)! T 8u, ' (r
: -1 i=1 i=1

1
f(u

0 < up < oew cu_y <,

-1 r-1 N
which involves the two guantities Z ud and I U. = exp[~nk_ _b]
i=1 % i=1 * - Ten
= Sl/s

. Since Sl/6 is distributed independently of 8, 8 may be set

10
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equal to one without loss of generality. For r = 2, § = Ul and

the distribution of S is given directly (see also (71, (11], ([12]).

For r = 3, the distributidn of § may be determined by making a

change of variable. The work is simplified by noting first that

the joint density of Ui's and also the function S .are symmetric in the

variables, Thus, for r = 3,

e N

P[S > s] = P[UlU2 > s!. where 0 < le< U2 < 1,
- 1 ¥
= EP[Ule > s8], where 0 < Ul <1, 0 < U2 < 1. -
Thus,
11
=7 - 1 :
F3(S) =1 ) J J f(ul,uz)dulduz.
s s/u2

Direct integration yields the result given earlier in the paper.
The integration becomes quite tedious for larger values of r, so }

that an approximation is needed.

5.2. APPROXIMATE DISTRIBU% LM
r-1 f
The variable T = - ) (Y, - Yr)/n takes on positive values, %

i=1

and the mean of nT/b is approximately equal to the variance of ®

nT/b, especially for small p. This is verified by Table I for

large n, since var(nT/b) = nc;, E(nT/b) = nkp, and kp = 02 in

p
Table I. Thus an approximate distribution with nearly the correct

first two moments is obtained by assuming that 2n7T/b is distritu-
ted approximately as a chi-square variable with anr,n degrees of
freedom. The approximate percentage points were determined for
r=2,n=25,10,20; r=3, n=5,10,30, and vy = .01,.05,.10,.25,

11




.50,.75,.90,.95 and .99; and the exact distributions were then
used to determine the true probabilities for these approximate
ﬁ percentage points. As seen in Takle III, the exact and approximate
probabilities are in very close agreement.

This chi~square approximation is also consistent with the
é asymptotic results, at least to the extent that kp = o;. This
: follows since ((2nT/b) - 2nkp)//EHE; 2 (xz(v)-v)//fv, which

becomes normally distributed as v increases; but

((2nT/b) - 2nkp)//zﬁfg = /n((T/b) - kp)/op which corresponds to
the asymptotic result.

Thus the chi-square approximation seems appropriate if
k substantial censoring is involved. Further work is needed to

determine the amount of error if r/n is near 1.

12
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TABLE II

Comparison of b with the BLUE and BLIE

N r | Vib/b) V(BLUE/b) ¢  nk_ /(l+nk_ ) MSE{ch/b) MSE(BLIL/b]
[ !

3 | .4175  .4168  .7055 .7064 ,2945 .2942

5 | 4 | .2553  .2538  .7966 .8004 .2033 .2024

5 | .1725  .1666  .8529 .8637 1471 .1428

3 | .4609  .4607  .6845 .6847 .3155 3154

10 | 4 | .2979  .2975  .7705 L7711 .2295 .2293

5 | .2161  .2155  .8223 .8235 1777 1773

10 | .0795  .0716  .9264 .9400 0736 .0668

3 | .4309  .4808  .6753 6753 .3247 .3247

4 | .3162  .3161  .7598 .7599 .2402 . 2402

200 15 | .2338  .2337  .8105 .8107 .1895 .1894
10 | .0960  .0956  .9124 .9134 .0876 .0872 |

14




TABLE III

Exact Pr(2nT/b < xi_m(anr n)]
. !

2
10 20 10




(1]

f2]

[3]

(5]

1 3

(7]

(8]

[91]

[10]

[11]
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CHAPTER 1II

RESULTS FOR ONE OR MORE INDEPENDENT SAMPLES

1. INTRODUCTION

The results presented here represent a continuation of the
previous chapter with particular application to a problem con-
sidered by Jaech [7].

Jaech [7] developg point and interval estimation procedures
for the shape parameter, R, if no more than two failures occur
per lot. A means for combining results from two or more lots is
also provided if the shape parameters are assumed equal. This
problem would be of interest, for example, if groups of items are
currently in service for which high reliability is required. Thus,
as soon as a few failures occur, the possible necessity of recal-
ling all items for replacement of degradable compeonents would have
to be considered. |

Procedures for point and interval estimation of B based on
two or more failures per lot are presented in the following sec-
tion with a method for combining results from two or more lots.
Point estimation for o« and R is considered in section 3 and a con-
servative lower limit for R is given in section 4., Exact interval
estimation procedures for o and R kased on twvo failures per lot
are derived in section 5. 1In section 5 the relative expected
experiment time required to obtain a certain precision with cen-
sored sampling as compared to complete sampling is studied. A

numerical example is given in section 7.
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2. ESTIMATION OF B WITH TWO OR MORE FAILURES

In [I] (Chapter 1) an estimator of b = 1/8 is given as g =

n' where the first r failures

n ’

r-1
-izl (1n X; - In xr)/nkr = T/nkr

from n items are observed and the constants kr,n can be obtained
from [I] or [1ll).(The subscripts on the constants will be suppressed
hereafter if the meaning is clear.) Also 2T/b is distributed ap-
proximately as a chi-square vdriable with 2nk degrees of freedom,

at least for r/n less than .5 or so. For r = 2 the exact distri-

bution of T/b is given by

F(t) = 1 - ne-t/(e_t +n - 1)
which is approximately the exponential distribution, 1 - e—t, for

large n. Thus,

nk

It

E(T/b)

f [1 - F(t)] 4t
0

n ln ({n - 1)/n)

1,

¢o that l/é = 1/T, which is the estimator suggested by Jaech [7]
for r = 2, 1In this case g is the best linear unbiased estimator
of b, but as fcir an exponential variable, E(l/g) is infinite,
This indicates that occasionally very unreasonable estimates will
occur if they are based only on a single lot with r = 2, A

median unbiased estimator, Bm = ¢/T, can be found by solving

In [(2n - 1)/(n - 1)] = in 2.

Plc/T < B] = %. This gives ¢
For r >'2’éu = (nk - 1)/(nkb) is approximately an unbiased esti-

mator of B, since if U~ xz(v) then E(1/U) = 1/(v - 2) for v > 2,
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Now suppose results are available from two or more lots for
which a common value of 8 is assumed. Suppose there are'rj ob-
served failures from nj elements in lot j, j = 1,...,m. Now the

variance of a linear combination, ) aJxJ, subject to | aj =1 1is
(

minimized by choosing ay = (l/c )/Z 1/032 . Since Var (b/b) =
)
4nk/4n“k2= 1/nk, this leads to
- D oaggiy} g - § oy d
b = n.k.b./ ) n.k. = T./ n k.
c j=1 33 J 321 33 j=1 P! j=1 3]
m
as the combined unbiased estimator of b. Also, 2 ) T. /b is dis-
Jlm
tributed approximately as a chi-square variable with 2 Z njkj
i=1

degrees of freedom; thus confidence limits or tests concerning b

or £ are immediately available based on one or more lots.




3. POINT ESTIMATION FOR a AND R

~

A closed form estimator of ais given by « =

~ ~ ~

et 8 1/8 .
(] ;7 + (n-r+ l)xr )/r] . This is in the form of ths
i=1

usual maximum likelihood estimator [3] of a with the maximum like- I

lihood estimator of B being replaced by the simple closed form es-

o ¢ Fr LA ESG y

timator being considered in this paper. Similarly a closed form

A8 i

exp [-(t/a)P]. The

estimator ofreliability is given by R

results of a Monte Carlo study of the means and variances of

these estimators are presented in Table 1. The tabled values are

based on 2,000 samples generated from a Weibull distribution with

P T

o =1 and B = 1. Corresponding values for maximum likelihcod es-

timators are available for some cases [2,5] and these are included
; for comparison purposes. The results of course are applicable
for other values of the parameters to the extent that for both

methods of estimation R/8 aad (a/a)b are pivotal guantities with

distributions independent of both parameters. Except for the @
simple estimators Q and éu there appears to be substantial bias %A
for small r with both methods of estimation. An unbiased estima-

tor of u = 1ln o could be obtained for a given n and r by use of

Monte Carlo work if this were deemed *o be worthwhile. For ex- ¢

ample, E[B8 In (a/a)] = E(ln all) where &ll denotes the estvimator ?

calculated from samples generated with o« = 1 and 8 = 1. Thus

i
PSS

In e - b E (1ln all) is an unbiased estimator of 1n ua.

To obtain a combined estimator from two or more lots consider

: :

the following. Let & = af and & (8)

B T e

r-1 e 8
[iZl xg f (- xr o+ Lxg 1/r.

It is well known that 2rg/¢ A, x2(2r). Thus if B were known,
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3

m . om
) rjsj/ ) T would be the appropriate linear combination of the

i=1 i=1

estimators to use to obtain a combined estimator of ¢ with minimum

variance. Since aa = E(B), this suggests using &c =

m . B. m ) - ~ b
Z r.a. J/ Z r. as the combined estimator of £. Also a, = Ec ¢
j:l 3] j=l ] -

. - Bc
and Rc = exp [-(t/ac) 1.
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1. INTERVAL ESTIMATION OF R

Joint confidence intervals for b and R and conservative

lower limits for R are given in [I] for a single lot. Similar

results can be obtained for combined lots. As mentioned earlier,

moo. m m
27 E.(8)/6r x2(2 ) r.) and 2 7 T./b is distributed approxi-
j=1 J j=1 3 j=1 3

m R R
mately as x2(2 E njkj)' Also bj and £j(6) are independent so
j=1
P2]r £, (B)/E < x 2(2Jrs),x 2, (2[n.k.) < 2[T./b < x,2(2]n k)]
373 T8y RTINS, 373 3 S 3 33

= (1 - ¢&,)(L -8

1 2 = %30

where P[xz(v) > xéz(v)] = §.

=

This gives the joint confidence

region {R > R(b), b > b > b}, where

_ 8 2 .
R(b) = exp {-t x51(2 ) rj)/2 ) rjEj(B)},

2
. k.
b=27 T]/x63(2 ) nyks)

b

]

2
2 ) Tj/xl_sz(Z ) nyky) .

A conservative (1 - 61)(1 - 62 - 63) lower confidence limit for R

is given by R = min_ R(b). As for a single lot, R(b) is either

b<b<b
a monotonic function of b or has a single minimum. In particular
m
if t is sufficiently small and at least if )} r. 1n (t/xr ) <
i=1 j
m

-1 Tj’ then R(b) is a monotonically decreasing function of b and
i=1

R = R(b). Also if t > max x. , then R = R(b).
3 3
It is theoretically possible to determine exact confidence

limits for R based on R and exact confidence limits for o based on

23
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the pivotal quantity (a/a)B; however, it has not been possible in
general to determine the necessary distributions mathematically.
Some Monte Carlo work has been carried out for these quantities

using the less convenient maximum likelihood estimators [2], and

tebles are given in [8]) for obtaining confidence limits for u or
b and tolerance bounds for the distribution b@sed on the best
linear invariant estimators of u and b for n = 3(1)25, r = 3(1)n.
Exact results for the case r = 2 are considered in the next
section,
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5. INTERVAL ESTIMATION FOR & AND R
BASED ON TWO FAILURES PER LOT

For r = 2 it can be shown that R is a monotonically increas-

ing function of

v =1n (x,/t)/In (x,/%) = In [(x,/6%1/11n (xp/0)° - 1n <xl/t)“],

the distribution of which depends only on 6 = (a/t)B = -1/1n R.
Letting Zi = (Xi/t)B, then we have
2
f(zl,zz) = [n(n - 1)/8%] exp [-(zl/e) - (n - 1)22/9],

0 < zl < 22 < w,

Making the transformation Y. = zl/zz, Y2

1 Z2 leads to

£lyyry,) = (v,/0°) exp [-(y;¥,/6) = (n - 1)y,/el; 1

0 < yl <1, 0 < y2 < ®, .

? Thus,
F(v) = P[-1n Yz/ln Yl < V] 3
-V
= P[Y2 < Yl ].
(l 1
For v = 0, FG (0) = JQ fo f(Yl:YZ) dy]_ dyZ
=1 -ne D Lo L 1eVE,
1 1
For Vv < 0, Fe (v) = f J f(ylryz) dyl dyz
0 y—l/v
2
1 o e _Jl=1l/v,
= F,(0) - f ala - 1) min-l)yp/8y - 7Yy /%) ay,.
0
« ] e 11,
For Vv > o' pe(v) = F‘e‘(O) + f &L’lé__ue (n A)Yz/e(l - e yZ /9) de‘
1
25
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Also, FO(l) =1 - exp (-n/8).

The above integrals were evaluated by numerical integration
and Fe(V) is tabulated in Table 2. Since FG(V) depends primarily
on (n - 1)/6 rather than on n and 6 separately, Fe(v) was tabu-
lated as a function of (n - 1)/6 and v for n = 10, 20, and 100,
and linear harmonic interpolation should be accurate for other
values of n. For an observed sample value v, a lower 1 - § con~
fidence limit, 8, for o is the value of 6 such that Pe(v) =1- 4,
also R = exp (-1/9), For example suppose a 90% lower confidence

limit for ¢ is desired and for n = 50, v = ,3 is observed. From

Table 2 (n - 1)/8 = 3 and 6 = 16.3, also R .94, Of course with
only two observed failures these methods are not likely to be
precise enough to be of practical value unless results from more

than one lot are available.

Although no special techniques have been developed for com-
bining lots in this case, standard general procedures can be used.

For example -2 1n Fe(V)ru x2(2) so for m independent 1lots,
m ) o '
-2 Y 1n Fy(V,) ~ x“(2m). For observed values Vi,...,v , the
i=1 * "
lower 1 - & confidence limit for 8 is the value 8 which satisfies
m 2 2 2
-2 ) 1lnF,(v.}) = ¥ (2m) , where P[x“(v) > x,“(v)}] = §. The
=1 .- &1 1-6 §
hypothesis testing format is somewhat more convenient in this
case. One would reject Hj: & 2 6

m

. . . T
.ha‘_ e > 60 lf '22‘ ln F

in favor of the alternative

2
(v.) < xy-.(2m).
=1 % b

o
The above results can also be used to determine confidence
linits for a by letting t = ¢« and 8 = 1. That is, Fl(v) is the

cumulative distribution function for V = 1n (X,/a)/1n (X,/X) . IE
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Fl(vY) = y, then

v
PIV < v ] =Ple>x,(x/%,) "] = v,
.
and xz(xl/xz) 7 is a lower 100y%® confidence limit for «. Proba-

bilities for this case are included in Table 2 under (n - 1)/¢ =

n-1.




6. COMPARISON OF CENSORED SAMPLING
AND COMPLETE SAMPLING

Consider a test of H_ : B < 8, against Hj: 8 > B, at the ¢
level of signifitance. A test for this hypothesis has been devel-
oped in [9] for complete samples based on the maximum likelihood
estimator, say é. The null hypothesis is rejected if é > Bo Sy
where iy satisfies P[é/B > Ryl = vy and is tabulated in [9]. The
power of the test for the alternative By is given by
P[é/B > (Bo/sa)zl_d]. If we use the simple censored sample estiriator
the null hypothesis is rejected if g < (l/Bo)qd(v), where v = anr,n
and c(v) denotes the chi-sguare over degrees of freedom distribu-
tion [1,4]. The power is given by P[cv « (Ba/so)ca(v)]. Values
of v are given in Table 3 which would provide the same power for
the censored sampling test as would be obtained by using the maxi-
mum likelihood method based on a complete sample of size N. Some
combinations of r and n which would yield these values of v are
also given and the relative expected experiment time, R.E.T. =
E(Xr,n)/E(XN,N)' is given in each case for 8 = 1 and B = 2. Note
that the table indicates that the comparison does not appear to
be very sensitive to the level of significance or the level of the

power being considered.
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7. NUMERICAL EXAMPLE

Harter and Moore [6] give a simulated sample of size 40
from a Weibull population with shape parameter 2, scale parameter
100 anda location parameter 10; and, they calculated maximum like-
lihood estimates based on the smallest 10, 20, 30 and 40 observa-
tions respectively. After subtracting the value of the location
parameter from each observation we calculated numerical values

which are given in Table 4 of the following quantities for

r =2, 10, 20, 30 and 40:

~

v = 2nkr,n, b, 8 = 1/b, By = ((v = 2)/v)8,

8(.025)

x.§75(v)/(v£) = C.975(v)é, and

£(.025)

C g25(v)8, where 8(8) denotes a

lower 1 - 6 confidence limit for R. The
lower limit based on maximum likelihood

estimates will be denoted by gm(é).

The hypothesis HO: g8 = Bo = 1 is rejected in favor of the alterra-

tive Hp: 8 > 1 at the § significance level if bg < Cl—d(v)‘ The

level of significance, &', at which this hypothesis could have been
rejected is given in Table 4. The power of a § level test of Hy against
an alternative 8§ is denoted by P(S,sa) = P[C < Bacl-é(v)] in

Table 4. 1In this example the true reliability is .90 at t = 32.46.

A conservative .9025 lower confidence limit for R, R =
r-1

min R(b), where R(b) = exp {-x gs(Zr)/Zl ! (xi/t)5+
b(.025)<b<b(.025) : i=1

(n -r + l)(xr/t)B]}, was determined for t = 32.46. For r =

, 20,30 and 40 the condition ln t - 1ln X, < ~-T/r holds so that
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R = 5(5(.025)). This is also the limit for r = 10 although the

above condition does not hold in this case.

The maximum likelihood estimates were included in the table
for comparison. Also confidence bounds for b and R are available
from [10] for complete sampling and from [III] /Chapter III) or [2]
for 25% and 50% censoring and these are included. Although con-
fidence bounds are included for the complete sample case for com-
parison purposes, it should be recalled that the efficiency of ﬁ
and the accuracy of the chi-square approximation are not as great
for large r/n. An estimate of a lower bound for reliability,
5(5), would perhaps also be a useful statistic and it is included

in the table.
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Monte Carlo study of means and variances of estimators;
g = 1.

a =1,

TABLE 1

(Tildes refer to maximum likelihood

estimators and carets to the simple estimators).

n 20 40
r 2 5 10 15 20 2 10 20 30 40

E (b) .986  .995 .997  .998 1.003 [.980 1.000 1.000 1.002 1.004
E (b) 51 .81 .91 .95 .96

E(8) 1.31  1.11 1.06 1.04 1.11  1.046 1.026 1.018
E(g) 1.07 1.098 1.060 1.036
B(5) 1.01 1.00 1.01 1.0l 999  ,999 1,000 1.005
1 (a) 1.24  1.007 .992  .995 1.10  1.000 .994  .998
E (1) -.12  -.060 =-.043 -.034 -.06 -.032 -.023 =-.017
E (u) -3 -.11 -.04 =.02

ER(.75) | .46 .69  .738  .744  .744 |.42 .72 .743  .746  .747
ER(.75) .756 .752  .755  .753
ER(.90) | .73 .89  .894  .894 .892 |.63 .89  .896 .896  .896
ER(.90) .902 .904  .903 .90l
ER(.95) | .87 .94  .944  .944  .943 |.80 .95  .947  .947  .946
ER(.95) .950 951  .951  .950
v (b) .93 .218 .095 .057 .042 [.92  .102  .044  .027  .022
V(b) .23 .161 .08l .051 .032

Vib,} .89  .245 .098 .057 .035

v (8) 922 .145 .074  .051 .162  .054  .030  .023
Vi(g) .036 063  .033  .019
V(a) 1.780 .140 .067  .057 .580 .067 .033  .028
viu) .€15 .136 .070  .059 .290  .066 .034  .029
V(u) .48 .131 .07  .056

V(R(.75))| .133 .030 .008 .0068 .0072|.148 .009  .0035 .0033 .0037
V(R(.75)) .0062 .0040 .0035 ,0031
V(R(.90))| .105 .007 .003 .0029 .0030|.145 .002 .0016 .0015 .0016
V(R(.90)) .0023 .0016 .0015 .0012
V(R(.95))] .052 .002 .0015 .0013 .0013/.097 .001  .0007 .0007 .0007
V(R(.95)) .0009 .0008 .0007 .0005
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TABLE 2

Values of P[ln (Xz/t)/ln (XZ/Xl) < v], 8 = (a/t)B = «1/1n R.
n=10

-30.0 .006 .015 .024 .032 .038 .043 .047 .051 .055
=20.0 .009 .023 .036 .047 .056 .063 .070 .075 .080
s -10.0 .017 .044 .069 .090 .107 .122 .134 .144 .153
L - 9.0 .018 . 049 .076 .100 .118 .134 .147 .158 .166
' ' - 8.0 .020 .054 .085 111 .132 .149 .163 .176 .187
- 7.0 .023 .061 .096 .125 .149 .168 .184 .198 .210
- 6.0 .027 .070 111 .144 .170 .192 .210 .226 .239
- 5.0 .031 .083 .130 .168 .199 .225 .246 .263 .279
4.0 .038 .101 .157 .204 . 240 . 270 .285 .316 .334
- 3.5 .043 .113 .176 .227 . 268 .301 .328 .350 . 370
- 3.0 .049 .128 .200 .257 .302 .339 .368 .393 <414
- 2.5 . 057 .149 .230 .296 . 347 .387 .420 .448 .471
-~ 2.0 .068 177 .272 . 348 .406 452 .489 .519 .544
1.5 .084 .217 .332 .421 .489 .540 .581 .614 .641
- 1.0 <111 .281 424 .531 .609 .666 +709 . 743 .769
- 0.5 .161 .396 .579 .704 .787 .842 .879 .905 .923
- 0.3 .196 .469 .669 .796 .872  .918 . 945 .963 .974
- 0.1 .248 .566 .773 . 887 .945 .974 .987 .994 . 997

0.0 .284 .622 .823 .923 .967 .987 .995 .998 . 999

0.1 .328 .678 . 864 . 946 «979 .992 .997 +999 1.000

0.3 .427 .766 .913 .969 .989 .996 .999 1.000

0.€ .557 . 842 . 946 .982 .994 .998 999

1.0 .671 .892 .964 .988  .996 .999 1.000

|
I

gt AN T T e s
1
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TABLE 2 (continued)

n = 20

°l

-30.0 .006 .015 .024 .032 .038 .044 .048 .052 .056 .086
-20.0| .008 .022 .036 .047 .057 .064 .071 .077 .082 .121
-10.0 ] .06 .043 .069 .091 .109 .123 .136 .147 .156 .218%8
9.0 .018 .048 .076 .100 .120 .136 .150 .161 .172 .237
8.0 .020 .053 .085 .1l1l1 .133 .151 .166 .179 .190 .262
- 7.0].022 .060 .096 .126 .150 .170 .187 .201 .214 .291
- €.0] .026 .069 .110 ,144 .172 .195 .214 .230 .244 .329
-5.,0].030 .082 .129 .169 .201 .228 .249 .268 .284 .379

e R L S S S Sach i S04 iR etisic ity
. . .
. i N ¢ M s

P

- 4.0(.037 .099 .157 .204 .242 .273 .299 .321 .339 .446 1

- 3.5(.042 .111 .175 .228 .270 .304 .332 .356 .376 .489 -

- 3.0|.047 .126 .199 .257 .304 .342 .373 .399 .421 .541

- 2,5|.055 .146 .229 .296 .349 .391 .425 .453 .477 .605

- 2.0|.066 .173 ,270 .348 .408 .455 .493 .524 .550 .684

-1.5|.082 .213 .330 .421 .490 .544 .585 .619 .646 .780

- 1.0 .107 .276 .420 .529 .609 .668 .713 .747 .774 .890

- 0.5| .155 .388 .572 .700 .785 .842 .880 .906 .925 .983

- 0.2|.189 .459 .661 .790 .869 .916 .945 .963 .974 .998

- 0.1].239 .553 .763 .881 .941 .972 .986 .993 .997 1.000
0.0{ .274 .608 .8l12 .916 .964 .985 .994 .997 .999
0.1] .316 .662 .852 .932 .976 .991 .996 .999 1.000 e
0.3] .412 .749 .902 .963 .986 .995 .998 .999 o
0.6| .538 .826 .937 .977 .992 .997 .999 1.000 fﬂ ,
1.0| .651 .878 .957 .985 .995 .998 .999 1
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TABLE 2 (continued)

n = 100

l:s
(oid O
b

-30.0{ .005 .015 .024 .032 .039 .044 .049 .057 .088 .150
¢ -20.0| .008 .022 .036 .047 .057 .065 .072 .084 .123 .204
: -10.0| .016 .043 .069 .091 .109 .125 .138 .159 .222 .347
-9.0| .017 .047 .076 .100 .120 .137 .151 .174 .242 .375
- 8.0/ .019 .053 .085 .112 .134 .153 .168 .193 .266 .408
- 7.0] .022 .060 .095 .126 .151 .172 .189 .217 .297 .449
- 6.0/ .025 .068 .110 .144 .173 .197 .216 .248 .335 .498
-5.0| .030 .081 .129 .169 .202 .230 .252 .288 .385 .560
- 4,0] .036 .C98 .156 .204 .244 .276 .302 .344 .45Z .638
] - 3.5| .041 .110 .174 .228 .271 .306 .335 .380 .496 .685
- 3.0! .046 .125 .197 .258 .306 .345 .376 .425 .548 .739
- 2.5| .054 .144 .228 .296 .350 .394 .429 .482 .612 .798
- 2.0| .064 .171 .269 .348 .409 .458 .497 .555 .690 .863
- 1.5] .07% .210 .327 .420 .491 .546 .589 .651 .785 .927
- 1.0{ .104 .272 .417 .528 .609 .670 .715 .777 .893 .9%79
- 0.5} .151 .38l .567 .697 .784 .841 .880 .926 .983 .999
- 0.3] .184 .451 .654 .786 .867 .915 .945 .974 .998 1,000
- 0.1] .233 .543 .755 .875 .938 .970 .985 .997 1.000

0.0| .266 .597 .803 .910 .960 -.983 .993 .99

0.1] .307 .65 .843 .934 .973 .989 .996 .999

0.3| .400 .736 .893 .958 .984 .994 .998 1.000

0.6| .524 .813 .929 .974 .990 .996 .999

1.0 .636 .867 .952 .982 .994 .998 .999




TABLE

Comparison between maximum likelihood test (complete

sample) and simple censored sample test.

N o Ba/Bo Power v n 15 20 30 60 100
10 .10 1.73 .75 28 12 12 14 14 14
10 .10 2.00 .90 28 12 13 14 14 14
10 .05 2.25 .90 28 12 13 14 14 14
R.E.T. (B=l) .51 .34 .21 .09 .05
R.E.T. (B=2) .72 .59 .46 .30 .23
20 .05 1.73 .90 59 23 27 29
20 .05 1.83 .95 60 23 27 29
R.E.T. (B=1) .39 .16 .09
R.E.T. (B=2) .63 .41 .31
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TABLE 4

Numerical example, n = 40, B = 2, a = 100.

A -~ A ~ Iy ~

v b b 8 B B, B, B£(.025) B_(.025) E(.025) 8, (+025)
2,03 .68 .34 1.46 2.90 .04 5,36

19.30 .81 .73 1.24 1.37 1.11 .58 2.13

44,68 .48 .48 2,08 2,09 1.99 1.90 1.31 1.19 3.02 2.92
78.50 .58 .56 1.73 1.78 1.69 1.68 1.23 1.18 2,31 2.36

159.21 .53 .51 1.88 1.95 1.86 1.88 1.49 1.45 2.32 2.41

s R(32.46) R(32.46) R R_ R(B) &' P(.025,1.5) P(.025,2.0)

g TR o e S

o

=m
76.5 27.9 .75 .64

151.3 136.6 .86 .87 .73 <79 .30 .19 47
83.9 83.8 .87 .87 .72 .79 .82 .005 .43 .88
96.4 96.3 . 86 .87 .72 .79 .82 .00l .68 .99
92.2 92.8 .87 .88 .75 .82 .84 <.001 .95 >.999
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CHAPTER III

RESULTS FOR CENSORED SAMPLING BASED
ON THE MAXIMUM LIKELIHOOD ESTIMATORS

1. INTRODUCTION AND NOTATION

In life testing experiments it is 2 fairly common practice
to terminate the experiment before all items have failed. The
Weibull distribution is often used as a model for the observa-
tions and when a computer is available maximum likelihood esti-
mation of the parameters is to be recommended. The tables pre-
sented in this paper enable one to set confidence limits on the
parameters and the reliability based on the maximum lilelihood
estimates for selected censoring &.uu sample sizes.

It is also observed thot, as in the case with no censoring,
the maximum likelihood estimator cf the reliability is very nearly
uinbiased and its -rariance is near the Cramér-Rao lower bound.
Unbiasing factors for ' he raximum likelihood estimator of the
shape parameter aire given.

The fora of the Weibull distribution function considered in

this chawter is
F(t;b,c) =~ 1 - exp (-(t/b)€) for t > 0

where L is the scale parameter and c¢ is the shape parameter  The




reliability at time t is simply R(t) = exp (-(t/b)%).
Let 5 and é be the maximum likelihood estimators of b and c¢

and let R(t) be the maximum likelihood estimator of R(t). Then
it is known [1,5] that the distribution of é/c and é log (B/b)
does not depend upon b and ¢, although it will, of course, depend
upon the sample size, n, and the number of observations before
censoring, r. Thus for a given n and r these pivotal functions
can be used to test hypotheses about b and ¢ or set confidence
intervals on b and ¢. The tables required when there is no cen-
soring are given by Thoman, Bain and Antle [4], and this paper
presents the tables when either 25% or 5n% of the largest obser-
vations are censored. Moreover, it appears that linear interpo-
lation should be adequate for censoring levels between those
given in the tables.

It was shown [5] that the distribution of ﬁ(t) depends only
upon the valuesof R(t), n and r. Tables providing lower confidence
limits fof R(t) tased upon m.l.e.'s‘from complete samples are
given by Thoman, Bain and Antle [5], and this paper presents the
tables needed when either 25% or 50% of the sample values are

censored from above.

The values for each n were obtained by simulation with 8000
sanmples (of size n) used for n = 40, 60, 80, 100 and 120. The
8000 samples were run in two sets of 4000 and the critical values
for each set of 4000 were compared. The critical values for the
reliability tables for é(t).g .9 usually differed by less than
.004, and so we believe there is little sampling error in these

tables. The critical values for the other tables differed somewhat
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more, those for y's of .05, .1, .9 and .95 usually differed by

about .02.

2. Inferences on the Parameters

2.1 Inferences on the shape parameter
The standardized function v/n (é/c - E(é/c)) was considered
in this case because of the convenience in the use of the asymp-
totic values and for better interpolation in the table. Table 1
gives percentage pcints for this quantity for selected cumulative
probability levels. The asymptotic percentage points were ob-
tained from the work of Harter and Moore [2] and are also included
in the table. It is seen from the table that the asymptotic
values are approached quite slowly. We believe this is due to
the lack of symmetry when the samples are censored on one side,
and it appears that the asymptotic values are not very useful in
the censored case. Unbiasing factors for ; are included in Table 1.
Tests of hypotheses concerning ¢ or confidence intervals for
c based on the function vn (;/c - E(;/c) can be easily developed
with the aid of Table 1. For example a 1 - a confidence interval

for ¢ is given by
[c/(Elc/c) + 2 _, n/VR)c/(E(c/c) + 2z ,5/VD)],
where the zY and E(;/c) are given in Table 1.

2.2 Inferences on the scale parameier
Again as an aid in interpnlation, percentage points for the

expression vn é In (b/b) are given in Table 2. Interpolation
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should be fairly good, but as was true for the shape parameter it

appears that the approach to the asymptotic values is guite slow,

and for one sided censored samples with n less than 120 the asymp-

totic values should not be used.

In this case, for example, a

100(1 -~ a)% confidence interval for b is given by

(b exp (—ul_a/z//ﬁé), b exp (-ua/z//ﬁé)].

Inferences on the Reliability

In many studies in which the Weibull distribution is used as

a model, the primary interest is in the reliability at some time
t, R(t)n

It is fortunate that in spite of skewness, censoring
and other difficulties,

the m.l.e. of R(t) for reasonable values

of R(t) has negligible bias and its variance is very close to

the Cramér-Rao lower bound for the variance of an unbiased estima-

tor of R(t).

. rotre e IR T T Gl (R Ca ¥ .
e e 2 R T b K .
.

This property was noted in [5) for complete sampling,

and it also holds for censored sampling. The bias of R(t) is

given in Table 3 and the variance in Table 4.

A comparison of
the variances and the Cramér-Rao lower bounds is given in Table 5.

g e RE R

Table 6 gives lower confidence limits on R(t). These are

read directly from the table by entering the value of R(t) ob-

e VS
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served.

A need for these tables to include high reliability

levels has been communicated to the authors, and this accounts

for the number of entries for reliabilities near 1 in the tables.

4.

Example

Harter and Moore [3] give a simulated samplé,of size 40 from

a Weibull population with shape parameter 2, scale parameter 100
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and location parameter 10; and, they calculated maximum likelihood
estimates based on the smallest 10, 20, 30 and 40 observations,
respectively. This example with the location parameter assumed
known may be used to illustrate the use of the tables.

For r = 20, é = 2,091 and B = 83.8. The unbiased estimate

of ¢ is (.911)(2.091) = 1.90. Also for example, a test of

H : ¢ = 1 against the alternative H

o ¢ > 1 corresponds to a test

A’
of whether an exponential model is appropriate, or whether a
Weibull model with an increasing failure rate is needed. This
hypothesis is rejected at the .05 level if 4T (c/1 - 1.098) > 2.95,
or if é > 1,56. Thus the hypothesis is rejected. A 90% confi-

dence interval for ¢ is given by

[2.091/(1.098 + 2.95/v40), 2.091/(1.098 -~ 2.09//40)]
= (1.34, 2.72].

A 90% confidence interval for b is

[83.8 exp (-2.16/(2.091)v40), 83.8 exp (3.75/(2.051)v40)]
= [71.17, 111.27].

In this example the true reliability at t = 32.459 is .90.

. 2.091

The m.l.e. for r = 20 is R = exp (-(32.459/83.8) ) = .871.

From Table 6 a lower 90% confidence limit for R(t) is .80.
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TABLE

2

-

Percentage points, uy,'such that P(/Hé ln(g/b) < uY Y
n %\y .01 .05 .1 .9 .95 .99
1.00 -2.58 -1.82 -1.41 1.39 1.80 2.62
40 .75 -3.29 -2.25 -1.69 1.39 1.85 2.61
.50 -6.21 -3.77 -2.91 1.63 2.16 2.96
1.00 -2.48 ~-1.78 -1.38 1.37 1.77 2.56
60 .75 -3.22 -2.16 -1.68 l.42 1.84 2.66
.50 ~5.37 -3.56 -2.69 1.67 2.18 3.01
1.00 -2.51 -1.76 -1.37 1.37 1.76 2.49
80 .75 -3.11 -2.10 -1.61 1.43 1.85 2.65
.50 -5.14 -3.45 -2.62 1.71 2.16 3.08
1.00 -2.45 -1.74 -1.37 1.35 1.73 2.50
100 .75 -3.12 -2.09 -1.60 1.44 1.85 2.61
.50 -4.92 -3.34 -2.49 1.78 2.26 3.19
1.00 -2.44 -1.73 -1.35 1.35 1.74 2.48
120 .75 -3.01 -2.01 -1.58 1.45 1.86 2.63
.50 -4.50 -3.17 | -2.44 1.75 2.27 3.13
1.00 -2.45 -1.73 -1.35 1.35 1.73 2.45
® .75 ~-2.69 -1.90 -1.48 1.48 1.90 2.69
.50 -3.69 -2.61 -2.03 2.03 2.61 3.69
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TABLE 3 BIAS IN é(t);
25% Censoring 50% Censoring
R(t) 40 60 80 100 120 40 60 80 100 120
.75 .005 .003 .003 .001 .002 .002 .,000 .001 .000 .000
. 80 .005 .003 .003 .002 .002 .004 .002 .002 .001 .o001
.85 .004 .202 .003 .001 .001 .005 .002 .002 .001 .002
.90 .003 .001 .002 .001 .001 .004 .002 .002 .001 .001
.925( .002 .000 .001 .000 .001 .003 .001 .002 .001 .001
95 .001 .000 .001 .000 .000 .001 .001 .001 .001 .001
.96 .000 ~.000 .006 -.000 .000 .001 .000 .001 .000 .000
.97 [-.000 -.000 ,000 -.000 -.000 .000 .000 .000 .000 .000O
.98 |-.000 -.000 -.000 -.000 -.0N0O; -.000 -.000 -.000 -.000 -.000
.99 |-.000 -.000 -.000 -.000 -.000} -.000 -.000 -.000 -.000 -.000
.995 {-.001 -.000 -.000 -.000 -.000{ -.001 -.000 -.000 -.000 -.000
.996 |-.001 -.000 -.000 -.000 -.000] -.001 ~.000 -.000 -.000 ~-.000
.997 (-.000 -.000 -.000 -.G000 -,000f -.001 -,000 -.000 -.000 -.000
.998 {-.000 ~,000 -,000 -.000 -.uvu| -.0C1 -.000 -.000 -.000 -.000
.999 §-.000 -.000 -.000 -.000 ~-.000| -,000 -.000 -.000 -.000 -.000
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TABLE 4 VARIANCE OF R(t)

25% Censoriny

50% Censoring

R(t)] n 40 69 80 100 120 40 60 80 100 120

.75} .0035 .0023 .0018 .0013 .0012] .0040 .0024 .0019 .0014 .0013
.80 .0030 .001%9 .0015 .0011 .0010 .0032 .0020 .0016 .0012 .0011
.85 .0023 .0015 .0012 .0009 .0008 | .0025 .0016 .0013 .0010 .0008
.90 .0015 .0010 .0008 .0006 .0006}| .0016 .0011 .0009 .00Nn7 .0006
.925 .0011 .0008 .0006 .0005 .0004 | .0012 ,0008 .0007 .0005 .0005
.95 .0007 .0005 .0004 .0003 .0003| .0008 .0006 .0004 .0004 .0003
.96 | .0005 .0004 .0003 .0003 .0002) .0006 .0004 .0004 .0003 .0003
.97 | .0004 .0003 .0003 .0002 .0002 ] .0005 .0003 .0003 .0003 .0002
.98 | .0003 .0002 .0002 .0002 .0002| .0003 .0002 .0002 .0002 .0002
.99 | .0002 .0002 .0001 .0001 .0001; .0002 .0002 .0002 .0001 .0001
.995 .0001 .0001 .0001 .0001 .0001} .0001 .0001 .0001 .0001 .0001
.99 .0001 .0001 .0001 .0001 .0001{ .0001 .0001 .0CO1 .0001 .0CO1l
.997 .0001 .0001 .0001 .0001 .0001§ .0001 .GO01 .0001 .0001 .0001
.998 .0001 .0001 .0001 .0001 .2001 | .0001 .0001 .0001 .0001 .0001
.999 .0001 .0001 .0001 .0001 .00O01 .0C01 .0001 .00C1 .0001

.0001
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TABLE 5 COMPARISON OF V(R(t)) WITH CRLB VARIANCE x 10" (n = 40)

R(t) .75 .80 .85 .90 .925 .95 .96 .97 .98 .99 >.99
—

r = 30

V(R(t)) 35 30 23 15 11 07 05 04 03 02 01

CRLB 33 28 22 14 10 06 04 03 02 01 01l

r = 20
V(ﬁ(t)) 40 32 25 16 12 08 06 05 03 02 01

CRLB 35 29 23 16 12 07 05 04 02 01 01
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TABLE 6 A
90% LOWER CONFIDENCE LIMITS ON R(t)

25% CENSORING

50% CENSORING

R(t) | nd40 60 80 100 120 | 40 60 80 100 120
.70 | .623 .638 .641 .650 .654 | .616 .639 .644 .652 .655
.72 | .641 .657 .661 .669 .673 | .635 .658 .663 .672 .674
.74 | .659 .676 .681 .690 .693 | .653 .677 .683 .691 .694
.76 | .678 .696 .702 .710 .713 | .674 .696 .703 .711 .74
.78 | .638 .716 .723 .731 .734 | .694 .716 .723 .732 .734
.80 | .718 .737 .744 .752 .755 | .715 .736 .744 .752 .755
.82 | .739 .758 .766 .774 .776 | .737 .757 .765 .773 .176
.84 | .761 .780 .789 .796 .798 | .75 .779 .787 .795 .797
.86 | .783 .802 .80 .818 .821 | .783 .801 .810 .817 .819
.88 | .807 .826 .833 .841 .843 | .807 .824 .832 .839 .842
.90 | .832 .850 .857 .864 .866 | .832 .847 .855 .862 .864
.92 | .858 .875 .882 .888 .890 | .858 .872 .879 .886 .888
.94 | .886 .901 .907 .913 .914 | .886 .898 .904 .910 .912
.95 | .901 .915 .920 .925 .927 | .901 .911 .917 .922 .924
.96 | .917 .929 .934 .939 .940 | .917 .925 .930 .935 .937
.97 | .938 .943 .947 .952 .953 | .933 .940 .944 .949 .951
.98 | .951 .959 .963 .966 .967 | .951 .956 .959 .964 .965
.99 | .971 .976 .979 .981 .982 | .971 .974 .S77 .979 .980
.9925| .977 .981 .984 .986 .986 | .977 .979 .982 .984 .985
.995 | .983 .987 .989 .990 .990 | .983 .985 .987 .988 .989
.996 | .986 .989 .990 .992 .992 | .986 .987 .989 .990 .991
.997 | .989 .992 .993 .394 .994 | .989 .98 .991 .992 .993
.998 | .992 .334 .995 .995 .996 | .992 .992 .994 .995 .995
.9985| .993 .995 .996 .996 .997 | .993 ,994 .995 .996 .996
999 | ,994 .996 .997 .998 .998 | .994 .995 .996 .997 .997
)
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TABLE 6B

95% LOWER CONFIDENCE LIMITS ON R(t)

25% CENSORING

50% CENSORING

Y N I P TR S

R(t) | n40 60 80 100 120 | 40 60 80 100 120
.70 | .594 .626 .624 .625 .643 | .600 .623 .628 .639 .646
72 | 613 .644 .643 .647 .662 | .614 .641 .647 .659 .664
.74 | .632 .662 .664 .669 .681 | .632 .660 .667 .678 .683
.76 | .651 .680 .684 .691 .701 | .651 .579 .686 .698 .702
.78 | .671 .699 .705 .713 .722 | .671 .699 .707 .719 .722
.80 | .692 .719 .726 .736 .743 | .691 .719 .727 .741 .742
82 | .714 .740 .748 .759 .764 | .712 .740 .749 .761 .762
.84 | .737 .761 .771 .782 .786 | .734 .761 .771 .782 .784
.86 | .760 .784 .795 .806 .809 | .757 .784 .793 .BO5 .B8O6
.88 | .785 .808 .819 .830 .832 | .781 .807 .817 .827 .829
.90 | .811 .833 .844 .854 .856 | .807 .831 .841 .851 .852
.92 | .839 .860 .870 .879 .88l | .834 .857 .866 .876 .877
.94 | .869 .888 .897 .904 .906 | .863 .883 .892 .902 .903
.95 | .885 .903 .911 .917 .920 | .878 .879 .906 .915 .9i7
.96 | .902 .19 .926 .932 .933 | .894 .913 .920 .929 .931
.97 | .920 .935 .941 .946 .948 | .913 .929 .936 .946 .947
.98 | .940. .953 .957 .962 .963 | .933 .947 .952 .960 .961
.99 | .964 .972 .976 .978 .979 | .957 .968 .971 .975 .977
.9925| .970 .978 .981 .983 .984 | .965 .974 .977 .980 .981
.995 | .978 .984 .986 .988 .988 | .973 .980 .983 .985 .986
.996 | .981 .986 .988 .990 .990 | .976 .983 .985 .988 .989
.997 | .985 .989 .991 .992 .992 | .980 .986 .988 .990 .991
.998 | .988 .992 .993 .994 .995 | .985 .990 .992 .993 .y94
.9985| .991 .994 .995 .996 .996 | .987 .992 .993 .994 .995
.999 | .993 .995 .996 .997 .997 | .990 .994 .995 .996 .996
19
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TABLE 6C

98% LOWER CONFIDENCE LIMITS ON R(t)

- 25% CENSORING 50% CENSORING
R(t) | nd40 60 80 100 120 | 40 60 80 106 120
.70 | .571 .5~ .610 .622 .625 | .590 .606 .613 .628 .631
.72 589 .615 .629 .641 .45 | .606 .623 .632 .647 .649
.74 | .601 .635 .648 .661 .666 | .622 .541 .650 .665 .669
.76 | .627 .654 .668 .68l .687 | .639 .660 .67° .685 .689
.78 647 .675 .688 .702 .708 | .657 .679 .689 .704 .708
.80 | .669 .696 .709 .723 .730 | .676 .698 .710 .725 .729
. 82 690 .718 .731 .745 .752 | .695 .719 .731 .746 .754
.84 713 .741 .753 .768 .775 | .716 .740 .752 .768 .773
.86 | .737 .764 .777 .791 .798 | .737 .763 .775 .790 .792
.88 | .763 .789 .801 .815 .822 | .760 .78 .799 .813 .B819
.90 790 .816 .827 .840 .846 | .735 .8l11 .824 .837 .848
.92 | .819 .s44 .854 .866 .871 | .812 .838 .850 .863 .871
.94 | .851 ..873 .883 .893 .896 | .842 .866 .877 .889 .893
.95 | .88 .889 .898 .908 .911 | .858 .881 .892 .903 .906
.96 | .886 .906 .914 .923 .926 | .875 .897. .907 .918 .922
.97 | .906 .924 .931 .938 .941 | .895 .915 .924 .934 ,937
.98 | .928 .943 .950 .955 .957 | .917 .935 .943 .951 .953
.99 | .954 .966 .970 .974 .976 | .945 .959 .964 .971 .972
.9925| .962 .972 .976 .980 .981 | .953 .966 .970 .976 .978
.995 | .971 .979 .983 .985 .986 | .963 .974 .977 .982 .984
996 | .975 .983 .985 .988 .989 | .967 .978 .981 .985 .987
.997 | .979 .986 .988 .990 .991 | .972 .982 .984 .988 .989
.998 | .984 .990 .991 .993 .394 | .978 .986 .988 .991 .992
.9985| .987 .992 .993 .994 .995 | .982 .989 .%90 .993 .994
999 | .990 .994 .995 .996 .996 | .986 .992 .993 .995 .995




E N L

TZBLE 6D
99% LOWER CONFIDENCE LIMITS ON R(t)

25% CENSORING 50% CENSORING

ﬁ(t) n 40 60 80 100 120 40 60 80 100 120

.70 .555 .585 ,601 .618 .623 .566 .590 .609 .613 .615
.72 .574 .,603 ,620 .636 .64l .582 .607 .626 .633 .636
.74 .592 ,622 .638 .655 .661 .599 .624 .643 .652 .656
.76 .612 .642 ,658 .674 .680 .617 .643 .661 .672 .677
.78 .632 .662 .678 .694 .701 .636 .662 .679 .693 .698
.80 .652 .684 .,699 .715 .721 .655 €8l .698 .714 .720
.82 .674 ,705 .720 .736 .743 .675 .702 .718 .735 .742

.84 .697 .728 .743 .759 .765 .696 .723 .739 .758 .765
.86 .722 ,752 .766 .782 .788 .718 .746 .761 .780 .788
.88 <747 .777 .791 .806 .Bi2 742 .770 .784 .804 .812

.90 «775 .804 .8l6 .831 .837 .768 .796 ,809 .829 .836

.92 .805 .832 .,844 .858 .863 .795 .823 .836 .B54 .B61
.94 .838 .863 .873 .886 .890 .826 .853 .865 .88l .B86
.95 .855 .,879 .889 .901 .905 .843 .869 .8B1 .895 .899
.96 .874 .B896 ,906 .916 .920 .861 .886 .897 .910 .914

.97 .895 .915 .923 .933 .936 .881 .905 .915 .927 .931

.98 .918 .935 .943 .951 .954 .904 .926 .935 .945 .949

.99 .947 .960 .965 .971 .973 .934 .9%3 .959 .965 .967
.9925| .956 .968 .973 .977 .978 .943 .960 .9€6 .971 .974

+995 .966 .975 .980 .984 .,984 .954 .969 .977 .978 .982
; .996 .970 .,979 .983 .986 .987 .959 .973 .%78 .981 .985

«997 .975 .983 .986 .989 .989 .966 .v77 .982 .985 .988

.998 .981 .3%87 .9%0 .992 .992 .974 .98z .986 .988 .99l
.9985 ) .984 .990 .992 .993 .994 .978 .975 .988 .991 .993|

.999 | .987 .992 .,994 .995 .996 | .983 .988 .991 .993% .994
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